获取3D对象表示对于创建照片现实的模拟器和为AR/VR应用程序收集资产很重要。神经领域已经显示出其在学习2D图像的场景的连续体积表示方面的有效性,但是从这些模型中获取对象表示,并以较弱的监督仍然是一个开放的挑战。在本文中,我们介绍了Laterf,一种从给定的2D图像和已知相机姿势的2D图像中提取感兴趣对象的方法,对象的自然语言描述以及少数对象和非对象标签 - 输入图像中的对象点。为了忠实地从场景中提取对象,后来在每个3D点上都以其他“对象”概率扩展NERF公式。此外,我们利用预先训练的剪辑模型与我们可区分的对象渲染器相结合的丰富潜在空间来注入对象的封闭部分。我们在合成数据集和真实数据集上展示了高保真对象提取,并通过广泛的消融研究证明我们的设计选择是合理的。
translated by 谷歌翻译
视频可访问性对于盲人和低愿景用户来说至关重要,以获得教育,就业和娱乐的公平参与。尽管有专业和业余服务和工具,但大多数人类生成的描述都很昂贵且耗时。此外,人生成的描述的速率不能匹配视频产生的速度。为了克服视频可访问性的越来越多的空白,我们开发了两个工具的混合系统到1)自动生成视频的描述,2)提供响应于视频上的用户查询的答案或附加描述。与26例盲和低视力下的混合方法研究结果表明,当两种工具在串联中使用时,我们的系统会显着提高用户理解和享受所选视频的理解和享受。此外,参与者报告说,在呈现自生物的描述与人类修订的自动化描述相关时,没有显着差异。我们的结果表明了对发达系统的热情及其承诺提供对视频的定制访问。我们讨论了当前工作的局限性,并为自动视频描述工具的未来发展提供了建议。
translated by 谷歌翻译
A recent trend in deep learning research features the application of graph neural networks for mesh-based continuum mechanics simulations. Most of these frameworks operate on graphs in which each edge connects two nodes. Inspired by the data connectivity in the finite element method, we connect the nodes by elements rather than edges, effectively forming a hypergraph. We implement a message-passing network on such a node-element hypergraph and explore the capability of the network for the modeling of fluid flow. The network is tested on two common benchmark problems, namely the fluid flow around a circular cylinder and airfoil configurations. The results show that such a message-passing network defined on the node-element hypergraph is able to generate more stable and accurate temporal roll-out predictions compared to the baseline generalized message-passing network defined on a normal graph. Along with adjustments in activation function and training loss, we expect this work to set a new strong baseline for future explorations of mesh-based fluid simulations with graph neural networks.
translated by 谷歌翻译
We propose the fully differentiable $\nabla$-RANSAC.It predicts the inlier probabilities of the input data points, exploits the predictions in a guided sampler, and estimates the model parameters (e.g., fundamental matrix) and its quality while propagating the gradients through the entire procedure. The random sampler in $\nabla$-RANSAC is based on a clever re-parametrization strategy, i.e.\ the Gumbel Softmax sampler, that allows propagating the gradients directly into the subsequent differentiable minimal solver. The model quality function marginalizes over the scores from all models estimated within $\nabla$-RANSAC to guide the network learning accurate and useful probabilities.$\nabla$-RANSAC is the first to unlock the end-to-end training of geometric estimation pipelines, containing feature detection, matching and RANSAC-like randomized robust estimation. As a proof of its potential, we train $\nabla$-RANSAC together with LoFTR, i.e. a recent detector-free feature matcher, to find reliable correspondences in an end-to-end manner. We test $\nabla$-RANSAC on a number of real-world datasets on fundamental and essential matrix estimation. It is superior to the state-of-the-art in terms of accuracy while being among the fastest methods. The code and trained models will be made public.
translated by 谷歌翻译
Our earlier research built a virtual shake robot in simulation to study the dynamics of precariously balanced rocks (PBR), which are negative indicators of earthquakes in nature. The simulation studies need validation through physical experiments. For this purpose, we developed Shakebot, a low-cost (under $2,000), open-source shake table to validate simulations of PBR dynamics and facilitate other ground motion experiments. The Shakebot is a custom one-dimensional prismatic robotic system with perception and motion software developed using the Robot Operating System (ROS). We adapted affordable and high-accuracy components from 3D printers, particularly a closed-loop stepper motor for actuation and a toothed belt for transmission. The stepper motor enables the bed to reach a maximum horizontal acceleration of 11.8 m/s^2 (1.2 g), and velocity of 0.5 m/s, when loaded with a 2 kg scale-model PBR. The perception system of the Shakebot consists of an accelerometer and a high frame-rate camera. By fusing camera-based displacements with acceleration measurements, the Shakebot is able to carry out accurate bed velocity estimation. The ROS-based perception and motion software simplifies the transition of code from our previous virtual shake robot to the physical Shakebot. The reuse of the control programs ensures that the implemented ground motions are consistent for both the simulation and physical experiments, which is critical to validate our simulation experiments.
translated by 谷歌翻译
Exploratory data analytics (EDA) is a sequential decision making process where analysts choose subsequent queries that might lead to some interesting insights based on the previous queries and corresponding results. Data processing systems often execute the queries on samples to produce results with low latency. Different downsampling strategy preserves different statistics of the data and have different magnitude of latency reductions. The optimum choice of sampling strategy often depends on the particular context of the analysis flow and the hidden intent of the analyst. In this paper, we are the first to consider the impact of sampling in interactive data exploration settings as they introduce approximation errors. We propose a Deep Reinforcement Learning (DRL) based framework which can optimize the sample selection in order to keep the analysis and insight generation flow intact. Evaluations with 3 real datasets show that our technique can preserve the original insight generation flow while improving the interaction latency, compared to baseline methods.
translated by 谷歌翻译
We study the learning dynamics of self-predictive learning for reinforcement learning, a family of algorithms that learn representations by minimizing the prediction error of their own future latent representations. Despite its recent empirical success, such algorithms have an apparent defect: trivial representations (such as constants) minimize the prediction error, yet it is obviously undesirable to converge to such solutions. Our central insight is that careful designs of the optimization dynamics are critical to learning meaningful representations. We identify that a faster paced optimization of the predictor and semi-gradient updates on the representation, are crucial to preventing the representation collapse. Then in an idealized setup, we show self-predictive learning dynamics carries out spectral decomposition on the state transition matrix, effectively capturing information of the transition dynamics. Building on the theoretical insights, we propose bidirectional self-predictive learning, a novel self-predictive algorithm that learns two representations simultaneously. We examine the robustness of our theoretical insights with a number of small-scale experiments and showcase the promise of the novel representation learning algorithm with large-scale experiments.
translated by 谷歌翻译
Transformers are powerful visual learners, in large part due to their conspicuous lack of manually-specified priors. This flexibility can be problematic in tasks that involve multiple-view geometry, due to the near-infinite possible variations in 3D shapes and viewpoints (requiring flexibility), and the precise nature of projective geometry (obeying rigid laws). To resolve this conundrum, we propose a "light touch" approach, guiding visual Transformers to learn multiple-view geometry but allowing them to break free when needed. We achieve this by using epipolar lines to guide the Transformer's cross-attention maps, penalizing attention values outside the epipolar lines and encouraging higher attention along these lines since they contain geometrically plausible matches. Unlike previous methods, our proposal does not require any camera pose information at test-time. We focus on pose-invariant object instance retrieval, where standard Transformer networks struggle, due to the large differences in viewpoint between query and retrieved images. Experimentally, our method outperforms state-of-the-art approaches at object retrieval, without needing pose information at test-time.
translated by 谷歌翻译
Real-world tasks are largely composed of multiple models, each performing a sub-task in a larger chain of tasks, i.e., using the output from a model as input for another model in a multi-model pipeline. A model like MATRa performs the task of Crosslingual Transliteration in two stages, using English as an intermediate transliteration target when transliterating between two indic languages. We propose a novel distillation technique, EPIK, that condenses two-stage pipelines for hierarchical tasks into a single end-to-end model without compromising performance. This method can create end-to-end models for tasks without needing a dedicated end-to-end dataset, solving the data scarcity problem. The EPIK model has been distilled from the MATra model using this technique of knowledge distillation. The MATra model can perform crosslingual transliteration between 5 languages - English, Hindi, Tamil, Kannada and Bengali. The EPIK model executes the task of transliteration without any intermediate English output while retaining the performance and accuracy of the MATra model. The EPIK model can perform transliteration with an average CER score of 0.015 and average phonetic accuracy of 92.1%. In addition, the average time for execution has reduced by 54.3% as compared to the teacher model and has a similarity score of 97.5% with the teacher encoder. In a few cases, the EPIK model (student model) can outperform the MATra model (teacher model) even though it has been distilled from the MATra model.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译